Skip to main content

Part 10: Working with APIs in JavaScript

  Working with APIs in JavaScript Outline: 1. Introduction to APIs: 1.1 Definition of APIs: Explanation of what an API (Application Programming Interface) is. Understanding the role of APIs in web development. Types of APIs:  RESTful APIs, SOAP APIs, etc. 1.2 Importance of APIs in Web Development: How APIs facilitate communication between different software systems. Use cases of APIs in modern web development. Examples of popular APIs and their impact. 2. Making API Requests: 2.1 HTTP Methods: Overview of common HTTP methods: GET, POST, PUT, DELETE. Explanation of when to use each HTTP method. 2.2 Fetch API: Introduction to the Fetch API in JavaScript. Making simple GET requests with Fetch. Handling responses from Fetch requests. 2.3 Sending Data in API Requests: Using POST requests to send data to the server. Handling different types of data (JSON, form data) in API requests. 3. Handling API Responses: 3.1 Parsing JSON: Importance of JSON (JavaScript Object Notation) in API responses.

New Switch Statement in Java

 New Switch Statement in Java

How you write switch statement in Java (Old way)?

To write a switch statement in Java, you follow a specific syntax. The switch statement allows you to evaluate the value of an expression against multiple case values and execute the corresponding block of code based on the matched case. Here's the basic structure of a switch statement in Java:

Explanation:

  • The expression is the value that you want to evaluate and compare with the cases. It must be of a primitive type (e.g., int, char) or an enumerated type (enum) in Java 7 and later.
  • Each case represents a specific value that you want to compare with the expression. If the expression matches a case value, the corresponding block of code under that case will be executed.
  • After executing the code inside the matching case, the break statement is used to exit the switch block. If you omit the break, the code will fall through to the next case, executing its code as well. This behavior is useful in some cases but should be used with caution.
  • You can have multiple case blocks with different values, allowing you to handle various scenarios based on the expression.
  • The default case is optional and is used when none of the case values match the expression. It provides a default block of code to be executed in such cases.

Example:


What is the new Switch statement in Java?

In September 2021, Java 12 introduced a new preview feature called "Switch Expressions," which provides a more concise and flexible way of writing switch statements. This feature was later finalized and became a standard feature in Java 14.

Switch expressions allow you to use the switch statement as an expression rather than just a statement. The syntax for switch expressions is different from the traditional switch statements. Here's how you write a switch expression in Java:

Explanation:

The switch keyword is followed by the expression that you want to evaluate, just like in traditional switch statements.

Instead of using the case keyword, you use the -> symbol to specify the value and the corresponding expression or result that should be returned when the expression matches the case.

You can have multiple cases separated by ->, and each case can have its own expression or value to be returned.

The default case is specified using default -> and provides a result when none of the cases match the expression.

Example:


In this example, the switch expression is used to assign the dayName variable based on the value of the dayOfWeek variable. The output will be "The day is: Tuesday" since dayOfWeek is set to 3.

Please note that switch expressions were introduced as a preview feature in Java 12 and became a standard feature starting from Java 14. As Java continues to evolve, newer versions may introduce further enhancements or changes to the switch expressions.

Here is the screenshot of output from IntelliJ IDE:




Comments

Popular posts from this blog

Part 9: Asynchronous Programming in JavaScript

Part 9: Asynchronous Programming in JavaScript Outline: 1. Introduction to Asynchronous Programming Definition of Asynchronous Programming Importance in Web Development Comparison with Synchronous Programming 2. Understanding JavaScript's Single-Threaded Model  Brief Explanation of JavaScript's Event Loop How Asynchronous Operations Fit into a Single Thread 3. Callbacks Explanation of Callback Functions Common Use Cases Callback Hell and Its Challenges 4. Promises Introduction to Promises as a Better Alternative to Callbacks Promise States: Pending, Fulfilled, Rejected Chaining Promises for Sequential Asynchronous Operations Error Handling with Promises 5. Async/Await Introduction to Async/Await as a Syntactic Sugar for Promises Writing Asynchronous Code in a Synchronous Style Error Handling with Async/Await 6. Event Listeners Asynchronous Nature of Event Listeners Handling User Interactions Asynchronously Examples of Asynchronous Event Handling 7. Timers and In

Part 8:What is DOM Manipulation in JavaScript?

What is DOM Manipulation in JavaScript? Welcome to Part 8 of our JavaScript Step by Step series! In this part, we will find out, what is DOM Manipulation in JavaScript? DOM (Document Object Model) manipulation using JavaScript is a programming interface for web documents. It represents the page so that programs can change the document structure, style, and content. What is the DOM? The DOM is a tree-like structure that represents the HTML of a web page. Each element in the HTML document is represented as a node in the DOM tree. These nodes are organized in a hierarchical structure, with the document itself at the root and the HTML elements as its branches and leaves. Here's a simple example of the DOM tree structure for a basic HTML document: <! DOCTYPE html > < html > < head >         < title > My Web Page </ title > </ head > < body >         < h1 > Hello, World! </ h1 >         < p > This is a paragraph. </ p > &

Learning JavaScript Step by Step - Part 7: Objects

Part 7: Objects in JavaScript What Are Objects? Objects in JavaScript are collections of key-value pairs. They're used to represent entities with properties and behaviors. Here's how you create an object: let person = {     name : " Alice " ,     age : 30 ,     isStudent : false }; 1. Curly braces {} define an object. 2. Each property is a key-value pair separated by a colon. Accessing Object Properties You can access object properties using dot notation or bracket notation: console . log (person . name) ; // Output: "Alice" console . log (person[ " age " ]) ; // Output: 30 Modifying Object Properties To change the value of an object property, simply assign a new value to it: person . age = 31 ; console . log (person . age) ; // Output: 31 Adding and Deleting Properties You can add new properties to an object or delete existing ones as needed: person . country = " USA " ; // Adding a new property delete person . isStudent ; /

Learning JavaScript Step by Step - Part 6: Arrays

Part 6: Arrays in JavaScript Welcome back to our JavaScript learning journey! In this part, we'll dive into one of the essential data structures: arrays. These are fundamental building blocks in JavaScript that enable you to work with collections of data and create more complex data structures. Creating Arrays An array is a collection of values, which can be of any data type, stored in a single variable. There are two methods of creating arrays in JavaScript: Method 1: Using Array Literals In this method, you directly list the elements you want to include within the array.This is the most common and convenient way to create an array. You define the array by enclosing a list of values inside square brackets []. Example: / Creating an array of numbers let numbers = [ 1 , 2 , 3 , 4 , 5 ] ; // Creating an array of strings let fruits = [ " apple " , " banana " , " cherry " ] ; // Creating an array of mixed data types let mixedArray = [ 1 , &quo

Learn JavaScript Step by Step Part 4 Control Flow

Part 4: Control Flow in JavaScript Welcome to the next part of our JavaScript journey! In this segment, we'll explore control flow in JavaScript. Control flow allows you to make decisions in your code and execute specific blocks of code based on conditions. It's a fundamental concept in programming. At the end of this blog you will get a quiz to test your understanding of this topic. Let's dive in! Conditional Statements: Making Decisions Conditional statements are used to make decisions in your code. They allow your program to take different actions depending on whether a certain condition is true or false. 1. If Statement:  The if statement is the most basic conditional statement. It executes a block of code if a specified condition evaluates to true. let age = 18 ; if (age >= 18 ) {     console . log ( " You are an adult. " ) ; } If you run the code in VS Code, the output will be: Output: You are an adult. 2. Else Statement:  You can use the else stateme

Learn JavaScript Step by Step Part 5 Functions

Part 5: Functions in JavaScript In this part, we'll dive into the exciting world of functions in JavaScript. Functions are like superpowers for your code. They allow you to encapsulate reusable pieces of logic, making your code more organized, efficient, and easier to maintain. We'll explore what functions are, how to declare them, and how to use them effectively. What Is a Function? Imagine a function as a mini-program within your program. It's a self-contained block of code that performs a specific task or calculation. Functions are designed to be reusable, so you can call them whenever you need that specific task done without writing the same code over and over. Declaring a Function: To declare a function, you use the function keyword followed by a name for your function. Here's a simple function that adds two numbers: function addNumbers ( a , b ) {     let result = a + b ;     return result ; } function: The keyword that tells JavaScript you're creating